foxBMS  1.2.0
The foxBMS Battery Management System API Documentation
epcos_b57251v5103j060.c
Go to the documentation of this file.
1 /**
2  *
3  * @copyright © 2010 - 2021, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
4  * All rights reserved.
5  *
6  * SPDX-License-Identifier: BSD-3-Clause
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright notice, this
12  * list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright notice,
15  * this list of conditions and the following disclaimer in the documentation
16  * and/or other materials provided with the distribution.
17  *
18  * 3. Neither the name of the copyright holder nor the names of its
19  * contributors may be used to endorse or promote products derived from
20  * this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * We kindly request you to use one or more of the following phrases to refer to
34  * foxBMS in your hardware, software, documentation or advertising materials:
35  *
36  * - ″This product uses parts of foxBMS®″
37  * - ″This product includes parts of foxBMS®″
38  * - ″This product is derived from foxBMS®″
39  *
40  */
41 
42 /**
43  * @file epcos_b57251v5103j060.c
44  * @author foxBMS Team
45  * @date 2018-10-30 (date of creation)
46  * @updated 2021-08-06 (date of last update)
47  * @ingroup TEMPERATURE_SENSORS
48  * @prefix TS
49  *
50  * @brief Resistive divider used for measuring temperature
51  *
52  */
53 
54 /*========== Includes =======================================================*/
55 #include "epcos_b57251v5103j060.h"
56 
57 #include "foxmath.h"
59 
60 /*========== Macros and Definitions =========================================*/
61 
62 /*========== Static Constant and Variable Definitions =======================*/
63 
64 /* clang-format off */
65 /** LUT filled from higher resistance to lower resistance */
67  { -550, 961580.00f },
68  { -500, 668920.00f },
69  { -450, 471270.00f },
70  { -400, 336060.00f },
71  { -350, 242430.00f },
72  { -300, 176810.00f },
73  { -250, 130320.00f },
74  { -200, 97020.00f },
75  { -150, 72923.00f },
76  { -100, 55314.00f },
77  { -50, 42325.00f },
78  { 0, 32657.00f },
79  { 50, 25400.00f },
80  { 100, 19907.00f },
81  { 150, 15716.00f },
82  { 200, 12494.00f },
83  { 250, 10000.00f },
84  { 300, 8055.20f },
85  { 350, 6528.80f },
86  { 400, 5322.90f },
87  { 450, 4364.50f },
88  { 500, 3598.10f },
89  { 550, 2981.90f },
90  { 600, 2483.70f },
91  { 650, 2078.70f },
92  { 700, 1747.90f },
93  { 750, 1476.30f },
94  { 800, 1252.30f },
95  { 850, 1066.70f },
96  { 900, 912.27f },
97  { 950, 783.19f },
98  { 1000, 674.88f },
99  { 1050, 583.63f },
100  { 1100, 506.47f },
101  { 1150, 440.98f },
102  { 1200, 385.20f },
103  { 1250, 337.52f },
104  { 1300, 296.63f },
105  { 1350, 261.46f },
106  { 1400, 231.11f },
107  { 1450, 204.84f },
108  { 1500, 182.03f }
109 };
110 /* clang-format on */
111 
112 /** size of the #ts_b57251v5103j060Lut LUT */
114 
115 /*========== Extern Constant and Variable Definitions =======================*/
116 /**
117  * @brief Defines for calculating the ADC voltage on the ends of the operating range.
118  * @details The ADC voltage is calculated with the following formula:
119  *
120  * V_adc = ((V_supply * R_ntc) / (R + R_ntc))
121  *
122  * Depending on the position of the NTC in the voltage resistor (R1/R2),
123  * different R_ntc values are used for the calculation.
124  */
125 /**@{*/
126 #if TS_EPCOS_B57251V5103J060_POSITION_IN_RESISTOR_DIVIDER_IS_R_1 == true
127 #define TS_EPCOS_B57251V5103J060_ADC_VOLTAGE_V_MAX_V \
128  (float)((TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_SUPPLY_VOLTAGE_V * ts_b57251v5103j060Lut[b57251v5103j060LutSize-1].resistance_Ohm) / (ts_b57251v5103j060Lut[b57251v5103j060LutSize-1].resistance_Ohm+TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_RESISTANCE_R_1_R_2_Ohm))
129 #define TS_EPCOS_B57251V5103J060_ADC_VOLTAGE_V_MIN_V \
130  (float)((TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_SUPPLY_VOLTAGE_V * ts_b57251v5103j060Lut[0].resistance_Ohm) / (ts_b57251v5103j060Lut[0].resistance_Ohm+TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_RESISTANCE_R_1_R_2_Ohm))
131 #else /* TS_EPCOS_B57251V5103J060_POSITION_IN_RESISTOR_DIVIDER_IS_R_1 == false */
132 #define TS_EPCOS_B57251V5103J060_ADC_VOLTAGE_V_MIN_V \
133  (float)((TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_SUPPLY_VOLTAGE_V * ts_b57251v5103j060Lut[b57251v5103j060LutSize-1].resistance_Ohm) / (ts_b57251v5103j060Lut[b57251v5103j060LutSize-1].resistance_Ohm+TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_RESISTANCE_R_1_R_2_Ohm))
134 #define TS_EPCOS_B57251V5103J060_ADC_VOLTAGE_V_MAX_V \
135  (float)((TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_SUPPLY_VOLTAGE_V * ts_b57251v5103j060Lut[0].resistance_Ohm) / (ts_b57251v5103j060Lut[0].resistance_Ohm+TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_RESISTANCE_R_1_R_2_Ohm))
136 #endif
137 /**@}*/
138 
139 /*========== Static Function Prototypes =====================================*/
140 
141 /*========== Static Function Implementations ================================*/
142 
143 /*========== Extern Function Implementations ================================*/
144 
145 extern int16_t TS_Epc00GetTemperatureFromLut(uint16_t adcVoltage_mV) {
146  int16_t temperature_ddegC = 0;
147  float resistance_Ohm = 0.0f;
148  float adcVoltage_V = adcVoltage_mV / 1000.0f; /* Convert mV to V */
149 
150  /* Check for valid ADC measurements to prevent undefined behavior */
152  /* Invalid measured ADC voltage -> sensor out of operating range or disconnected/shorted */
153  temperature_ddegC = INT16_MIN;
154  } else if (adcVoltage_V < TS_EPCOS_B57251V5103J060_ADC_VOLTAGE_V_MIN_V) {
155  /* Invalid measured ADC voltage -> sensor out of operating range or shorted/disconnected */
156  temperature_ddegC = INT16_MAX;
157  } else {
158  /* Calculate NTC resistance based on measured ADC voltage */
159 #if TS_EPCOS_B57251V5103J060_POSITION_IN_RESISTOR_DIVIDER_IS_R_1 == true
160  /* R_1 = R_2 * ( ( V_supply / V_adc ) - 1 ) */
163 #else /* TS_EPCOS_B57251V5103J060_POSITION_IN_RESISTOR_DIVIDER_IS_R_1 == false */
164  /* R_2 = R_1 * ( V_2 / ( V_supply - V_adc ) ) */
166  (adcVoltage_V / (TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_SUPPLY_VOLTAGE_V - adcVoltage_V));
167 #endif /* TS_EPCOS_B57251V5103J060_POSITION_IN_RESISTOR_DIVIDER_IS_R_1 */
168 
169  /* Variables for interpolating LUT value */
170  uint16_t between_high = 0;
171  uint16_t between_low = 0;
172  for (uint16_t i = 1; i < b57251v5103j060LutSize; i++) {
173  if (resistance_Ohm < ts_b57251v5103j060Lut[i].resistance_Ohm) {
174  between_low = i + 1u;
175  between_high = i;
176  }
177  }
178 
179  /* Interpolate between LUT values, but do not extrapolate LUT! */
180  if (!(((between_high == 0u) && (between_low == 0u)) || /* measured resistance > maximum LUT resistance */
181  (between_low > b57251v5103j060LutSize))) { /* measured resistance < minimum LUT resistance */
182  temperature_ddegC = (int16_t)MATH_LinearInterpolation(
183  ts_b57251v5103j060Lut[between_low].resistance_Ohm,
184  ts_b57251v5103j060Lut[between_low].temperature_ddegC,
185  ts_b57251v5103j060Lut[between_high].resistance_Ohm,
186  ts_b57251v5103j060Lut[between_high].temperature_ddegC,
187  resistance_Ohm);
188  }
189  }
190 
191  /* Return temperature based on measured NTC resistance */
192  return temperature_ddegC;
193 }
194 
195 extern int16_t TS_Epc00GetTemperatureFromPolynomial(uint16_t adcVoltage_mV) {
196  float temperature_degC = 0.0;
197  float vadc_V = adcVoltage_mV / 1000.0;
198  float vadc2 = vadc_V * vadc_V;
199  float vadc3 = vadc2 * vadc_V;
200  float vadc4 = vadc3 * vadc_V;
201  float vadc5 = vadc4 * vadc_V;
202  float vadc6 = vadc5 * vadc_V;
203 
204  temperature_degC = (6.8405f * vadc6) - (74.815f * vadc5) + (317.48f * vadc4) - (669.16f * vadc3) +
205  (740.82f * vadc2) - (444.97f * vadc_V) + 166.48f;
206 
207  return (int16_t)(temperature_degC * 10.0f); /* Convert deg into deci &deg;C */
208 }
209 
210 /*========== Externalized Static Function Implementations (Unit Test) =======*/
int16_t TS_Epc00GetTemperatureFromPolynomial(uint16_t adcVoltage_mV)
returns temperature based on measured ADC voltage
static uint16_t b57251v5103j060LutSize
#define TS_EPCOS_B57251V5103J060_ADC_VOLTAGE_V_MAX_V
Defines for calculating the ADC voltage on the ends of the operating range.
static const TS_TEMPERATURE_SENSOR_LUT_s ts_b57251v5103j060Lut[]
int16_t TS_Epc00GetTemperatureFromLut(uint16_t adcVoltage_mV)
returns temperature based on measured ADC voltage
#define TS_EPCOS_B57251V5103J060_ADC_VOLTAGE_V_MIN_V
Defines for calculating the ADC voltage on the ends of the operating range.
Resistive divider used for measuring temperature.
#define TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_RESISTANCE_R_1_R_2_Ohm
#define TS_EPCOS_B57251V5103J060_RESISTOR_DIVIDER_SUPPLY_VOLTAGE_V
float MATH_LinearInterpolation(const float x1, const float y1, const float x2, const float y2, const float x_interpolate)
Linear inter-/extrapolates a third point according to two given points.
Definition: foxmath.c:84
math library for often used math functions