foxBMS  1.1.0
The foxBMS Battery Management System API Documentation
can_cbs_tx_state_estimation.c
Go to the documentation of this file.
1 /**
2  *
3  * @copyright © 2010 - 2021, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
4  * All rights reserved.
5  *
6  * SPDX-License-Identifier: BSD-3-Clause
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright notice, this
12  * list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright notice,
15  * this list of conditions and the following disclaimer in the documentation
16  * and/or other materials provided with the distribution.
17  *
18  * 3. Neither the name of the copyright holder nor the names of its
19  * contributors may be used to endorse or promote products derived from
20  * this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
28  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * We kindly request you to use one or more of the following phrases to refer to
34  * foxBMS in your hardware, software, documentation or advertising materials:
35  *
36  * - ″This product uses parts of foxBMS®″
37  * - ″This product includes parts of foxBMS®″
38  * - ″This product is derived from foxBMS®″
39  *
40  */
41 
42 /**
43  * @file can_cbs_tx_state_estimation.c
44  * @author foxBMS Team
45  * @date 2021-07-21 (date of creation)
46  * @updated 2021-07-21 (date of last update)
47  * @ingroup DRIVER
48  * @prefix CAN
49  *
50  * @brief CAN driver Tx callback implementation
51  * @details CAN Tx callback for state estimation messages
52  */
53 
54 /*========== Includes =======================================================*/
55 #include "bms.h"
56 #include "can_cbs.h"
57 #include "can_helper.h"
58 #include "foxmath.h"
59 
60 /*========== Macros and Definitions =========================================*/
61 
62 /*========== Static Constant and Variable Definitions =======================*/
63 
64 /*========== Extern Constant and Variable Definitions =======================*/
65 
66 /*========== Static Function Prototypes =====================================*/
67 
68 /*========== Static Function Implementations ================================*/
69 
70 /*========== Extern Function Implementations ================================*/
71 extern uint32_t CAN_TxStateEstimation(
72  uint32_t id,
73  uint8_t dlc,
74  CAN_ENDIANNESS_e endianness,
75  uint8_t *pCanData,
76  uint8_t *pMuxId,
77  const CAN_SHIM_s *const kpkCanShim) {
78  /* pMuxId is not used here, therefore has to be NULL_PTR */
79  FAS_ASSERT(pMuxId == NULL_PTR);
80 
81  FAS_ASSERT(id < CAN_MAX_11BIT_ID); /* Currently standard ID, 11 bit */
82  FAS_ASSERT(dlc <= CAN_MAX_DLC); /* Currently max 8 bytes in a CAN frame */
83  FAS_ASSERT(pCanData != NULL_PTR);
84  FAS_ASSERT(kpkCanShim != NULL_PTR);
85  uint64_t message = 0;
86  float signalData = 0.0f;
87  float offset = 0.0f;
88  float factor = 0.0f;
89  uint64_t data = 0u;
90 
91  float minimumStringSoc_perc = FLT_MAX;
92  float maximumStringSoc_perc = FLT_MIN;
93  float minimumStringSoe_perc = FLT_MAX;
94  float maximumStringSoe_perc = FLT_MIN;
95  float packSoc_perc = 0.0f;
96  float packSoe_perc = 0.0f;
97  uint32_t minimumStringEnergy_Wh = UINT32_MAX;
98  uint32_t packEnergyLeft_Wh = 0u;
99 
100  DATA_READ_DATA(kpkCanShim->pTableSox);
101 
102  /* Check current direction */
104  /* If battery system is charging use maximum values */
105  for (uint8_t stringNumber = 0u; stringNumber < BS_NR_OF_STRINGS; stringNumber++) {
106  if (true == BMS_IsStringClosed(stringNumber)) {
107  if (maximumStringSoc_perc < kpkCanShim->pTableSox->maximumSoc_perc[stringNumber]) {
108  maximumStringSoc_perc = kpkCanShim->pTableSox->maximumSoc_perc[stringNumber];
109  }
110  if (maximumStringSoe_perc < kpkCanShim->pTableSox->maximumSoe_perc[stringNumber]) {
111  maximumStringSoe_perc = kpkCanShim->pTableSox->maximumSoe_perc[stringNumber];
112  }
113  if (minimumStringEnergy_Wh > kpkCanShim->pTableSox->minimumSoe_Wh[stringNumber]) {
114  minimumStringEnergy_Wh = kpkCanShim->pTableSox->minimumSoe_Wh[stringNumber];
115  }
116  }
117  }
118  } else {
119  /* If battery system is discharging or at rest use minimum values */
120  for (uint8_t stringNumber = 0u; stringNumber < BS_NR_OF_STRINGS; stringNumber++) {
121  if (true == BMS_IsStringClosed(stringNumber)) {
122  if (minimumStringSoc_perc > kpkCanShim->pTableSox->minimumSoc_perc[stringNumber]) {
123  minimumStringSoc_perc = kpkCanShim->pTableSox->minimumSoc_perc[stringNumber];
124  }
125  if (minimumStringSoe_perc > kpkCanShim->pTableSox->minimumSoe_perc[stringNumber]) {
126  minimumStringSoe_perc = kpkCanShim->pTableSox->minimumSoe_perc[stringNumber];
127  }
128  if (minimumStringEnergy_Wh > kpkCanShim->pTableSox->minimumSoe_Wh[stringNumber]) {
129  minimumStringEnergy_Wh = kpkCanShim->pTableSox->minimumSoe_Wh[stringNumber];
130  }
131  }
132  }
133  }
134 
135  /* Calculate pack value */
136  if (BMS_GetNumberOfConnectedStrings() != 0u) {
138  packSoc_perc = (BMS_GetNumberOfConnectedStrings() * maximumStringSoc_perc) / BS_NR_OF_STRINGS;
139  packSoe_perc = (BMS_GetNumberOfConnectedStrings() * maximumStringSoe_perc) / BS_NR_OF_STRINGS;
140  } else {
141  packSoc_perc = (BMS_GetNumberOfConnectedStrings() * minimumStringSoc_perc) / BS_NR_OF_STRINGS;
142  packSoe_perc = (BMS_GetNumberOfConnectedStrings() * minimumStringSoe_perc) / BS_NR_OF_STRINGS;
143  }
144  packEnergyLeft_Wh = BMS_GetNumberOfConnectedStrings() * minimumStringEnergy_Wh;
145  } else {
146  packSoc_perc = 0.0f;
147  packSoe_perc = 0.0f;
148  packEnergyLeft_Wh = 0u;
149  }
150 
151  /* SOC */
152  signalData = packSoc_perc;
153  offset = 0.0f;
154  factor = 100.0f; /* convert from perc to 0.01perc */
155  signalData = (signalData + offset) * factor;
156  data = (int64_t)signalData;
157  /* set data in CAN frame */
158  CAN_TxSetMessageDataWithSignalData(&message, 7u, 14u, data, endianness);
159 
160  /* SOE */
161  signalData = packSoe_perc;
162  offset = 0.0f;
163  factor = 100.0f; /* convert from perc to 0.01perc */
164  signalData = (signalData + offset) * factor;
165  data = (int64_t)signalData;
166  /* set data in CAN frame */
167  CAN_TxSetMessageDataWithSignalData(&message, 9u, 14u, data, endianness);
168 
169  /* Pack energy */
170  signalData = packEnergyLeft_Wh;
171  offset = 0.0f;
172  factor = 0.1f; /* convert from Wh to 10Wh */
173  signalData = (signalData + offset) * factor;
174  data = (int64_t)signalData;
175  /* set data in CAN frame */
176  CAN_TxSetMessageDataWithSignalData(&message, 47u, 24u, data, endianness);
177 
178  /* SOH */
179  signalData = 100.0f; /* TODO */
180  offset = 0.0f;
181  factor = 1.0f / 0.025f; /* convert from perc to 0.025% */
182  signalData = (signalData + offset) * factor;
183  data = (int64_t)signalData;
184  /* set data in CAN frame */
185  CAN_TxSetMessageDataWithSignalData(&message, 27u, 12u, data, endianness);
186 
187  /* now copy data in the buffer that will be used to send data */
188  CAN_TxSetCanDataWithMessageData(message, pCanData, endianness);
189 
190  return 0;
191 }
192 
194  uint32_t id,
195  uint8_t dlc,
196  CAN_ENDIANNESS_e endianness,
197  uint8_t *pCanData,
198  uint8_t *pMuxId,
199  const CAN_SHIM_s *const kpkCanShim) {
200  FAS_ASSERT(id < CAN_MAX_11BIT_ID); /* Currently standard ID, 11 bit */
201  FAS_ASSERT(dlc <= CAN_MAX_DLC); /* Currently max 8 bytes in a CAN frame */
202  FAS_ASSERT(pCanData != NULL_PTR);
203  FAS_ASSERT(pMuxId != NULL_PTR);
204  FAS_ASSERT(*pMuxId < BS_NR_OF_STRINGS);
205  FAS_ASSERT(kpkCanShim != NULL_PTR);
206  uint64_t message = 0;
207 
208  /* STUB IMPLEMENTATION */
209 
210  /* now copy data in the buffer that will be used to send data */
211  CAN_TxSetCanDataWithMessageData(message, pCanData, endianness);
212 
213  return 0;
214 }
215 
216 /*========== Externalized Static Function Implementations (Unit Test) =======*/
217 #ifdef UNITY_UNIT_TEST
218 
219 #endif
#define BS_NR_OF_STRINGS
uint8_t BMS_GetNumberOfConnectedStrings(void)
Returns number of connected strings.
Definition: bms.c:1317
bool BMS_IsStringClosed(uint8_t stringNumber)
Returns string state (closed or open)
Definition: bms.c:1299
BMS_CURRENT_FLOW_STATE_e BMS_GetBatterySystemState(void)
Returns current battery system state (charging/discharging, resting or in relaxation phase)
Definition: bms.c:1272
bms driver header
@ BMS_CHARGING
Definition: bms.h:66
CAN callbacks header.
uint32_t CAN_TxStateEstimation(uint32_t id, uint8_t dlc, CAN_ENDIANNESS_e endianness, uint8_t *pCanData, uint8_t *pMuxId, const CAN_SHIM_s *const kpkCanShim)
can tx callback function for state estimation values
uint32_t CAN_TxStringStateEstimation(uint32_t id, uint8_t dlc, CAN_ENDIANNESS_e endianness, uint8_t *pCanData, uint8_t *pMuxId, const CAN_SHIM_s *const kpkCanShim)
can tx callback function for string state estimation
#define CAN_MAX_11BIT_ID
Definition: can_cfg.h:68
enum CAN_ENDIANNESS CAN_ENDIANNESS_e
#define CAN_MAX_DLC
Definition: can_cfg.h:70
void CAN_TxSetMessageDataWithSignalData(uint64_t *pMessage, uint64_t bitStart, uint8_t bitLength, uint64_t canSignal, CAN_ENDIANNESS_e endianness)
Puts CAN signal data in a 64-bit variable. This function is used to compose a 64-bit CAN message....
Definition: can_helper.c:166
void CAN_TxSetCanDataWithMessageData(uint64_t message, uint8_t *pCanData, CAN_ENDIANNESS_e endianness)
Copy CAN data from a 64-bit variable to 8 bytes. This function is used to copy a 64-bit CAN message t...
Definition: can_helper.c:205
Headers for the helper functions for the CAN module.
#define DATA_READ_DATA(...)
Definition: database.h:76
#define FAS_ASSERT(x)
Assertion macro that asserts that x is true.
Definition: fassert.h:237
math library for often used math functions
#define NULL_PTR
Null pointer.
Definition: fstd_types.h:66
DATA_BLOCK_SOX_s * pTableSox
Definition: can_cfg.h:304
float maximumSoe_perc[BS_NR_OF_STRINGS]
Definition: database_cfg.h:499
float minimumSoe_perc[BS_NR_OF_STRINGS]
Definition: database_cfg.h:498
float minimumSoc_perc[BS_NR_OF_STRINGS]
Definition: database_cfg.h:495
float maximumSoc_perc[BS_NR_OF_STRINGS]
Definition: database_cfg.h:496
uint32_t minimumSoe_Wh[BS_NR_OF_STRINGS]
Definition: database_cfg.h:502